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Abstract 
Culturally relevant and sustaining implementations of com-
puting education are increasingly leveraging young learners' 
passion for sports as a platform for building interest in differ-
ent STEM (Science, Technology, Engineering, and Math) 
concepts. Numerous disciplines spanning physics, engineer-
ing, data science, and especially Artificial Intelligence 
(AI) based computing are not only authentically used in pro-
fessional sports in today's world but can also be productively 
introduced to introduce young learners to these disciplines 
and facilitate deep engagement with the same in the context 
of sports. In this work, we present a curriculum that includes 
a constellation of proprietary apps and tools that we show to 
student athletes learning sports like basketball and soccer 
which use AI methods like pose detection and IMU-based 
gesture detection to track activity and provide feedback. We 
also share Scratch extensions which enable rich access to 
sports related pose, object, and gesture detection algorithms 
that youth can then tinker around with and develop their own 
sports drill applications. We present early findings from pilot 
implementations of portions of these tools and curricula, 
which also fostered discussion relating to the failings, risks, 
and social harms associated with many of these different AI 
methods – noticeable in professional sports contexts, and rel-
evant to youths' lives as active users of AI technologies as 
well as potential future creators of the same.   

Introduction    
Richer Artificial Intelligence (AI) education opportunities is 
a critical rising need for youth across the world (Luckin et 
al. 2016). Simultaneously, there are persistent and expand-
ing challenges regarding the access of computing and AI ed-
ucation opportunities, especially across social axes like gen-
der, race, and class among others (Webb et al. 2012).  

Recognizing the power of interdisciplinary education for 
broadening participation in STEM disciplines (Doerschuk et 
al. 2016), and especially computer science contexts (Lasker 
and Weiss 2003), we believe that centering a similar goal of 
creating interdisciplinary activities around AI education is a 
key method to contextualize it with activities that are more 
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internally motivating, and also situate AI in activities where 
its utility and power are salient to learners.  

With this framing in mind, we are working on developing 
curricula and tools that help provide bridges between sports, 
PE classes, and computing classes. Sports as a participatory 
space provides unique power and potential to enrich tech-
nology exposure and knowledge. In contrast to most formal 
(and even many informal) educational opportunities, sports 
activities like physical education classes include a whole 
body movement that is broadly known to help social, phys-
ical, and mental health of learners across ages (D’Isanto 
2016). Additionally, it also provides a context for engaging 
with body syntonicity, an often underemphasized aspect of 
Papert’s framework of constructionism (1978), wherein he 
designed Logo and corresponding physical Logo turtles 
with the aspect of enabling connecting with mathematical 
and computational concepts through learners’ personal body 
movement.  

Additionally, sports are often pursued as an extracurricu-
lar hobby and passion, engendering unique, rich cultures and 
providing a healthy venting space from classroom schooling 
(Messner, 2009). Additionally, in many contexts, they are 
also pursued as an avenue for life success, often in response 
to the academic component of schools undeserving many 
learners and communities (James, 2012).  

As a result, we focus on enriching sports experiences of 
youth by introducing technology and AI exposure activities 
in the same, while centering student interest in physical ac-
tivity. Through this bridging, we are able to provide a novel 
perspective into AI and its capabilities, bridge the discipli-
nary divide between academics and sports, and identify 
novel kinds of learner participation in AI education rarely 
seen as relevant to computing practices and learning. In this 
paper, we share our work in this space – describe our curric-
ula and tools, and present preliminary findings from early 
implementations in formal and informal contexts. 

 

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

16011



Related Work 

Interdisciplinary Computing and AI Education 
There is a vast breadth of work bridging computing and dif-
ferent STEM disciplines. One of the earliest and most sig-
nificant thrusts in computer science education as empow-
ered by Papert’s model of constructionism (1980) itself 
placed a key value of learning computer science at the 
school level in service of understanding other concepts to a 
greater depth. Papert argued that creating Logo programs to 
understand concepts in math and other disciplines has pow-
erful value in both learning computer science as well as 
math to a depth often inaccessible in school classrooms.   

 Building on this perspective, CT-Stem is an example of a 
project with numerous publicly available tools and curricula 
(Jona et al. 2014) which brings computational thinking edu-
cation opportunities and experiences into physics, chemis-
try, and biology classrooms through the use of agent-based 
modeling examples which help develop deeper understand-
ing of science concepts as well as make value of bridging 
disciplines overtly visible.  

 There is an extensive presence of artificial intelligence 
systems present in adaptive tutoring systems across numer-
ous disciplines (Mousavinasab et al. 2021). At the same 
time, there is limited approach in education targeting AI 
concepts themselves in the context of non-computing disci-
plines and classrooms.  

 So far, AI education has been mostly only approached 
through numerous playful and game-based educational ac-
tivities, including social AI co-drawing activities (Ali et al. 
2019), robot car control games (Williams 2018), game de-
sign and development curricula (Zyda and Koenig 2008), 
and art generation activities (Ali et al. 2021). These projects 
are key frontiers in expanding access to AI education and 
concepts in different forms, but they are almost always situ-
ated in curricula and classrooms aimed at computing and AI 
education.  

 Outside of computing classrooms, DanceOn (Castro et al. 
2022) is an exemplary project of providing culturally re-
sponsive computing education opportunities by engaging 
dancers in AI concepts through tools that help add visuali-
zations and effects to their choreography.  

AI (Education) in Sports 
Our project builds on DanceOn’s approach, as well as the 
work by Zimmerman-Niefield et al. (2019), who implement 
machine learning techniques and education among soccer 
players by developing sensors for them to assess their own 
gameplay.  
 To develop a fuller curriculum that engages learners 
across different sports contexts, our work relies on the al-
ready populous market of commercial and publicly availa-
ble AI technologies for sports.  

 Professional sports have a long running practice of deeply 
engaging with players’ and teams’ performance statistics 
(Ofoghi et al. 2013) – acting as the bedrock of league indus-
tries where players are valued and traded across teams on 
their performance as individuals and team members.  
 More recently, as different kinds of AI systems and sen-
sors have become increasingly affordable and accurate, a 
deeper level of analysis of athletes’ participation has be-
come commonplace. Sensors in the form of wearables are 
used by professional athletes (Lutz et al. 2020) as well as all 
kinds of people in their everyday lives to track fitness, 
health, amount of exercise conducted, and details of move-
ment through different activities. While the ability of wear-
ables to provide real time as well as cumulative detailed in-
formation about wearers’ stress levels, and fitness measure-
ments like lung capacity offer a powerful way to make 
gameplay and team strategies responsive to players’ capac-
ity, they have also been used to measure other activities in 
athletes’ lives like sleep and daily movement raising con-
cerns about privacy and ethics around these practices 
(Karkazis and Fishman 2017).  
 This is in addition to another classic way of analyzing 
sports – video cameras. Building on the legacy of the first 
captured video motion which was of a race horse, video 
cameras have long been used to analyze sports in action, for 
referee judgments, and for analyzing different player tech-
niques. With the increasing ease of AI systems being able to 
commercially process video even in real-time, numerous 
AI-driven apps have been developed to track play infor-
mation automatically, including attempts, passes, successful 
shots, speed of throw or hits, and many other game metrics.  
 Lastly, there is also a slew of sensor embedded gameballs 
that allow for less detailed data collection and analysis than 
video cameras, but sensing that tends to be more portable, 
and requiring lesser external infrastructure like cameras. 
Soccer, basketballs, golf clubs, and other kinds of racquets 
and balls are being developed with the ability to track pat-
terns of how different athletes play, what provides them with 
real-time as well as cumulative information about their 
strengths, weaknesses, and ways to improve.  
 In the following section, we discuss specific examples of 
these three different kinds of sports technologies and how 
we have developed accompanying educational materials to 
make their underlying AI concepts and practices more ac-
cessible to learners. 

Resources and Experiences 
Given the categories of sports technologies we described, 
we now describe how we integrate them with educational 
computing tools to make underlying AI concepts explaina-
ble and modifiable for learners.  
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 The activities we describe have been used across elemen-
tary school students to high schoolers. Centrally, most of the 
usage is aimed at learners from grades 3-8. We draw on de-
scriptions of learner usage from a variety of contexts: PE 
and library classes; informal venues like informal pro-
gramming at parks, libraries, community centers; and 
pop-ups as well as week long summer camps. Across con-
texts, our recruitment varies from engaging with school stu-
dents who have to follow classroom curricula, drop-in at-
tendance at sports-centered community events and regis-
tered participants at sports and STEM summer camps, At 
the end of each activity description, we briefly discuss how 
these activities reference different broad AI concepts and in-
itiate productive conceptual conversations around.  

Video Sensing: HomeCourt + Scratch 
HomeCourt.AI is a camera based iPad app that tracks body 
movement to be used for a variety of training drills for bas-
ketball (and more recently, soccer) (Figure 1). It has a wide 
host of reaction and movement drills, which are used in nu-
merous physical education classes as well as pro athlete 
training for practicing different moves, especially when off 
court, but sometimes also on sports spaces. It provides a 
uniquely appealing experience by gamifying these drills – 
keeping track of score and performance records, comparing 
on local and global leaderboards, and even running move-
ment based eSports tournaments more recently. Addition-
ally, it also has a functionality to record whole court 
matches, and track player movements, and different stats re-
garding the location of different attempted shots, tracking 
different players’ accuracy and scores. While the makers of 
HomeCourt app do not publicly reveal the algorithms being 
used, we believe they are a mixture of movement, person, 
and object tracking, and pose detection algorithms, leading 
to a well packaged AI system catering to Basketball training. 
 

 
Figure 1: A demo screenshot of the Homecourt app’s reac-

tion drill (taken from Homecourt’s website) 

We introduce the HomeCourt app typically in a gym, 
or a large enough space to move freely and start off with 
the reaction drill. In this drill, green circles appear for short 
periods of time (up to 5 seconds), and players get rewarded 
points for how quickly they tap these circles, i.e., for having 
a quicker reaction speed. Depending on access to space and 
basketballs, we also let learners compete on more complex 
versions of the reaction drill, which only progress on con-
tinued dribbling of the basketball, building players’ basket-
ball bouncing skills, alongside their ability to manage space 
against opponents who would be moving closer to them dur-
ing an actual game. 
 If learners are engaging in a whole match, we also set up 
recording for a match – the stats of which are interesting 
and often surprising to almost all young players. We dis-
cuss different players’ shot accuracy, movement across the 
space, and how they can reflect on and use the data that 
HomeCourt’s recordings provide. We also discuss if play-
ers can think of features they would add or improve to 
HomeCourt if they had the ability.  
 These discussions have led to ideas like adding an abil-
ity to change difficulty levels with more control, noticing 
that the reaction drill responds to different body parts like 
elbows, shoulders, knees, etc and whether we can restrict 
this. 
 Following this, we inquire which of the players might be 
interested in making their own versions of HomeCourt. If 
no one is interested we simply demo the version we have 
made using Scratch and the Body Sensing blacks made by 
the Dancing with AI project (Jordan et al. 2021), which 
provide pose detection body skeletal detection in the form 
of Scratch Blocks (Figure 2). If some players do exhibit in-
terest, we walk them through the blocks, and show how 
these blocks allow for choosing specific parts of the body 
(like wrist, hand, elbow, and others), and how to create a 
collision detection script which enables the different reac-
tion circles and score keeping.  

Figure 2: Screenshot of Scratch based reaction time game 
in action (left), and list of skeleton access provided by 

Body Sensing blocks 
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 For this programming activity, we have found lower reli-
ability with Scratch programming on iPads, so tend to use 
chromebooks or any laptops with webcameras to do this 
programming activity. We encourage programming players 
to create variations in their game to make it harder as a chal-
lenge to others in the class and make everybody compete on 
the different programmed versions of Scratch Reaction 
Time as well. 
 We are currently working on creating block-based access 
to Sports-centered object and person detection scripts, to en-
able learners to also create the match recording and shot 
tracking aspect of HomeCourt. For this, we are working on 
blocks that can differentiate people, track different balls like 
soccer and basketballs, and scoring objects like goals and 
baskets, to enable learners to create scripts that can identify 
successful shots from misses, and even track different play-
ers simultaneously to record scores in a whole match.  
 This activity is key in discussing the ability of video 
based AI systems in helping sports practice, which often 
also opens the door to discussing the usage of similar sys-
tems in their surroundings – seen on face identifying sys-
tems on smartphones, and home security systems – and the 
underlying ethics of regarding data access and surveillance 
enabled these systems (Zhang et al., 2022). More directly 
relevant to the extensions we show them, these extensions 
also provide the stage to discuss commonly implemented 
pose detection models. 

Wearables: Smartwatches + Micro:bits 
We introduce wearables using smartwatches which provide 
instant access to step counting. This activity also requires an 
open space, often best done around a track field. We ask 
learners to take a lap or walk a certain distance and count 
the number of steps they think it takes to cover that distance. 
After this, we have a short discussion about how they could 
make this task easier – most groups have at least some youth 
if not many who know about smartwatches and name FitBits 
or Apple Watches as capable devices to do the same. After 
a short discussion about how they think these watches work, 
we equip learners with a smartwatch and make them walk 
the same distance. We compare learners’ initial count with 
that from the watch, and then invite learners to make their 
own step counters using Micro:bits. Micro:bits are a popular 
physical computing board with numerous in-built sensors, 
and are programmable through MakeCode which in turn 
provides a block based interface (as well as JavaScript and 
Python editing for the same code) (Austin et al. 2020). We 
follow one of MakeCode’s in-built tutorials for the Mi-
cro:bit for making a step counter, which involves simply 
three blocks of identifying a shake and counting those as 
steps. We repeat the walking exercise with the smartwatch 
and the micro:bit worn around the wrist or ankle, and then 
discuss a comparison of the numbers provided by the two 

devices. Finally, we invite learners to try to trick the two 
devices into counting more steps than they walked, which is 
often followed by a discussion around how the smart-
watches tend to not count as many “fake” movements as the 
micro:bit does. This creates an entry point to discuss details 
of what the micro:bit considers a “shake”, and how smart-
watches use algorithms that are trained on more data to re-
duce their errors in counting steps for different gaits.  

 We have also found promising engagement through using 
wearables with built-in engaging activities. For instance, the 
Moov Fitness Coach (NEX Team 2017) wearables provide 
exercise activities in their app – specifically a cardio boxing 
activity, which provides a reaction based punching drill that 
scores players in dialogue with graphics presented on a con-
nected mobile app. We conduct this activity in pairs by ask-
ing players to compete on their scores. Following this, sim-
ilar to other activities, we invite learners to make their own 
versions of the same game. This is another activity that can 
be done with minimal space and played even inside a class-
room. 

 Since MakeCode’s micro:bit interface does not enable 
easy access to interactive graphics to make a game-like in-
terface we have made Scratch blocks and micro:Bit firm-
ware which enables micro:bit’s motion data to be usable in-
side the Scratch interface (Figure 3), which builds on Wil-
liams’ (2018) base work on building Scratch extensions for 
PopBots. 

Learners are able to create a basic emulation of the cardio 
boxing activity using shake detections and thresholds for in-
tense movement and direction change, we are currently 
working on extending this work to enable pattern detection 
algorithms through Scratch blocks to be able to detect dif-
ferent kinds of punches. This is expected to not only be rel-
evant for emulating the cardio boxing activity but provide 
valuable modules and tools for our upcoming collaborations 
with community boxing gyms as well.  

 
Figure 3: The main blocks in our Scratch extension that ex-

poses motion data from micro:bits to Scratch 

Ball Sensors: Play Impossible & SIQ + Micro:bits 
Lastly, we show systems which have sensors embedded in-
side other sports objects. So far, these have centered around 
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game balls (in the family of handheld balls like basketballs 
and volleyballs). One of the easiest to implement activities 
we have is using the  Play Impossible Gameball (Baden 
Sports 2020), which comes with a suite of games that can be 
played through phone and desktop apps using small game 
balls. These can be played in any space and are easiest to 
play inside a classroom. We ask learners to arrange them-
selves into 2 teams and start with the Showdown challenge 
around the Shake-Off game – a timed competition around 
which team can shake the ball faster than the other. This 
game, and other Play:Impossible activities, consistently re-
ceive very intense engagement. For instance, teachers who 
played this with their third graders told us that the Air Time 
games and other activities centered around tossing the ball 
in the air caused some minor damage to their classroom’s 
ceilings as a result of students’ excitement in play and com-
petition.  

 The shake-off game is the easiest to recreate using mi-
cro:bits – a basic recreation of it is identical to the step coun-
ter which simply counts the number of times the micro:bit is 
shaken. This recreation works noticeably different than the 
impossible gameball’s measurement of ball shaking amount 
– which again works to trigger a conversation about differ-
ent algorithms for identifying different movements.  

 Another embedded sensor ball we have found to be very 
relevant on the Basketball court, are the SIQ Basketballs 
(SportIQ 2008). Also used by professional teams for meas-
uring statistics and also recording play patterns, the SIQ 
Basketballs are proprietary basketballs that come with an 
app that (similar to HomeCourt) are able to measure shots, 
misses, trajectories of attempts, and also generate user pro-
files over extended gameplay. Discussions about how sen-
sors inside a ball are able to recognize a successful shot or 
not often leave learners with a pending curiosity about better 
understanding how different kinds of movement can be so 
reliably identified.  

These activities extend the applied AI concepts surround-
ing gesture detection from the last section, to identifying 
movement patterns from inside these different balls. These 
very often lean towards supervised learning methods since 
ball movements are noisy and hard to describe in a system-
atic pattern – especially since the location of the sensor in-
side the ball is constantly changing relative to the ball’s cen-
ter and direction of movement. We are able to discuss these 
concepts at varying levels of complexity and detail with 
learners from high school and above – from describing the 
process from collection, labelling, training, and prediction 
at the broadest of terms, to specifics of different learning al-
gorithms and methods that are used for classification of such 
data streams. With younger learners, this activity expands 
the meaning of identifying aspects of activity from sensors 
without access to human-familiar perception (visual sensors 
like cameras or on-body trackers), to assess events that feel 
like they need such measurements.  

Discussion and Future Work 
In addition to the equity centered goals of foregrounding AI 
tools and concepts through sports, there is a critically pro-
ductive form of embodied cognition and learning accessed 
in this modality that can benefit all learners by providing 
novel representations (National Research Council 2000). 
Analogous to Papert’s concept of body synotonicity (1978) 
mentioned in the introduction, understanding how to imple-
ment logics for gesture recognition through data produced 
from a wearable, and next from inside a ball, embeds AI 
concepts and understandings across a novel diversity of con-
texts and entities for learners to think through and help de-
velop their understandings. 

In addition to more familiar ways of thinking about ges-
tures as formed through users’ own wrists or bodies, ball-
embedded sensors push learners to think about gestures and 
extracting meaning from data through nontrivial contextual 
frames like how movement data from within a basketball 
can predict when and how it is thrown, and when it hits a 
backboard or goes through a hoop.  

Especially related to sensor-embedded balls, we are 
working on formulating reliable fabrication techniques to 
embed programmable sensors inside balls that can retain in-
tegrity, but also have an ability to be charged over time. 
With this, we might be able to develop more open source 
and easily programmable ball-based AI learning activities. 

We are extensively working on formalizing curricular 
tools and materials around our technological creations (cur-
rently being compiled on our project website (tiilt Lab 2022) 
in ways that provide more specific connections between 
context, age groups, and ideas that can be effectively dis-
cussed. Unsurprisingly, such a compilation not only requires 
many broader implementations and testing of these materi-
als but need to be recognized for their reliance on learners’ 
prior cultural exposures to technologies and critical dis-
courses around technology. It is critical to center inequitable 
creation, usage, and impacts of different aspects of numer-
ous (AI enabled) technologies in education, design, and dis-
cussions around the same (Ko et al. 2020). 
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